Modelagem de Equações Estruturais com Mínimos Quadrados Parciais: um Exemplo daAplicação do SmartPLS® em Pesquisas em Contabilidade

  • João Carlos Hipólito Bernardes do Nascimento Doutorando em Ciências Contábeis pela Universidade Federal do Rio de Janeiro (UFRJ)
  • Marcelo Alvaro da Silva Macedo Professor Associado II na UFRJ
Palavras-chave: Modelagem de Equações Estruturais, Mínimos Quadrados Parciais, SmartPLS

Resumo

Frente ao crescente interesse da academia em Contabilidade em investigar fenômenos latentes, os pesquisadores têm se utilizado de técnicas multivariadas robustas. Entretanto, a despeito da Modelagem de Equações Estruturais já ser bastante utilizada na literatura internacional, a academia em Contabilidade pouco tem utilizado a variante baseada nos Mínimos Quadrados Parciais (PLS-SEM), em grande parte, pelo desconhecimento de a aplicabilidade e dos benefícios decorrentes da sua utilização para a pesquisa em Contabilidade. Muito embora a abordagem PLS-SEM seja corriqueiramente utilizada na condução de surveys, esse método é adequado para modelar complexas relações com múltiplos relacionamentos de dependência e independência entre variáveis latentes, sendo, nesse aspecto, bastante útil para a aplicação em experimentos e dados de arquivos. Nesse sentido, é apresentada uma revisão da literatura dos estudos em Contabilidade que utilizaram a técnica PLS-SEM e, a seguir, considerando que não foram notados materiais focados especificamente em exemplificar a aplicação da técnica no âmbito de Contabilidade, uma aplicação PLS-SEM é realizada, com o objetivo de fomentar a condução de pesquisas exploratórias por meio do software SmartPLS®, sendo, nesse ponto, especialmente útil para discentes de pós-graduação. A principal contribuição do presente artigo é, portanto, é metodológica, dado o objetivo de identificar claramente as diretrizes para o uso adequado de PLS. Ao exemplificar a condução de uma pesquisa exploratória utilizando PLS-SEM, espera-se contribuir para o incremento da compreensão dos pesquisadores acerca de como utilizar e reportar a técnica em suas pesquisas.

Biografia do Autor

João Carlos Hipólito Bernardes do Nascimento, Doutorando em Ciências Contábeis pela Universidade Federal do Rio de Janeiro (UFRJ)
Mestre em Ciências Contábeis pelaFucape Business School
Marcelo Alvaro da Silva Macedo, Professor Associado II na UFRJ
Doutor em Engenharia de Produção pela UFRJ com Pós-Doutorado em Controladoria e Contabilidade e Pós-Doutorado pela USP

Referências

Abernethy, M. A., Bouwens, J., & Van Lent, L. (2010). Leadership and control system design. Management Accounting Research, 21(1), pp. 2-16. doi:10.1016/j.

Agarwal, R., Sarkar, M.B., & Echambadi, R. (2002). The conditioning effect of time on firm survival: an industry life cycle approach. Academy of Management Journal, 45(5), pp. 971-994. doi: 10.2307/3069325

Anderson, S. W., Hesford, J. W., & Young, S. M. (2002). Factors influencing the performance of activity based costing teams: a field study of ABC model development time in the automobile industry. Accounting, Organizations and Society, 27(3), pp. 195-211. doi:10.1016/S0361-3682(01)00057-5

Andrade, D. F., Tavares, H. R., & Valle, R. C. (2000). Teoria de Resposta ao Item: conceitos e aplicações. ABE - Associação Brasileira de Estatística, 4º SINAPE.

Bagozzi, R. P. & Yi, Y. (2012). Specification, evaluation, and interpretation of structural equation models, Journal of the Academy of Marketing Science, 40(1), pp. 8-34. doi: 10.1007/s11747-011-0278-x

Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1), pp.74–94. doi: 10.1007/BF02723327

Baron, R. M., Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), pp. 1173. doi:10.1037/0022-3514.51.6.1173

Bentler, P., & Chou, C. (1987). Practical issues in structural equation modeling. Sociological Methods and Research, 16(1), pp. 78-117. doi: 10.1177/0049124187016001004

Bido, D, S, Silva, D., Souza, C. A, & Godoy, A. S. (2009) Indicadores formativos na modelagem em equações estruturais com estimação via PLS-PM: Como lidar com a multicolinearidade entre eles. Anais do Encontro Nacional da Associação Nacional de Pós-Graduação e Pesquisa em Administração.Curitiba, PR, Brasil, 28.

Bisbe, J., Batista-Fogueta, J., & Chenhall, R. (2007). Defining management accounting constructs: A methodological note on the risks of conceptual misspecification. Accounting, Organizations and Society, 32(7), pp. 789−820. doi: 10.1016/j.aos.2006.09.010

Bollen, Kenneth A. & Bauldry, Shawn (2011). Three Cs in measurement models: Causal indicators, composite indicators, and covariates. Psychological Methods, 16(3), pp. 265-284. doi: 10.1037/a0024448

Bouwens, J., & van Lent, L. (2006). Performance measure properties and the effect of incentive contracts. Journal of Management Accounting Research, 18(1), pp. 55−75. doi: 10.2308/jmar.2006.18.1.55

Chapman, C. S., & Kihn, L. A. (2009). Information system integration, enabling control and performance. Accounting, organizations and society, 34(2), pp. 151-169. doi: 10.1016/j.aos.2008.07.003

Chenhall, R. H. (2003). Management Control Systems Design Within its Organizational Context: Findings from Contingency-Based Research and Directions for the Future. Accounting, Organizations and Society, 28(2), pp. 127-168. doi: 10.1016/S0361-3682(01)00027-7

Chenhall, R. H. (2004). The role of cognitive and affective conflict in early implementation of activity-based cost management. Behavioral Research in Accounting, 16(1), pp. 19-44. doi:10.2308/bria.2004.16.1.19

Chenhall, R. H. (2005). Integrative Strategic Performance Measurement Systems, Strategic Alignment of Manufacturing, Learning and Strategic Outcomes: An Exploratory Study. Accounting, Organizations and Society, 30(5), pp. 395–422. doi: 10.1016/j.aos.2004.08.001

Chin, W. W., Marcolin, B. L., & Newsted, P. R. (1996). A partial least squares latent variable modelling approach for measuring interaction effects: Results from a Monte Carlo simulation study and voice mail emotion/adoption study. Paper presented at the 17th International Conference on Information Systems, Cleveland, OH

Chin, W. W. (1998). Issues and opinion on structural equation modeling. MIS Quarterly, 22(1), vii–xvi.

Chin, W. W., Newsted, P. R. (1999). Structural equation modeling analysis with small samples using partial least squares. In: Hoyle R, editor. Statistical strategies for small sample research. Thousand Oaks, CA: Sage Publications; 307-341.

Chong, K. M., & Mahama, H. (2014). The impact of interactive and diagnostic uses of budgets on team effectiveness. Management Accounting Research, 25(3), pp. 206-222. doi: 10.1016/j.mar.2013.10.008

Cohen, J., Pant, L., & Sharp, D. (1994). Behavioral determinants of auditor aggressiveness in client relations. Behavioral Research in Accounting, 6, pp. 121-143.

Diaz, M. C., & Loraas, T. (2010). Learning new uses of technology while on an audit engagement: Contextualizing general models to advance pragmatic understanding. International Journal of Accounting Information Systems, 11(1), pp. 61-77. doi: 10.1016/j.accinf.2009.05.001

Dowling, C. (2009). Appropriate audit support system use: The influence of auditor, audit team, and firm factors. The Accounting Review, 84(3), pp. 771-810. doi: 10.2308/accr.2009.84.3.771

Edwards, Jeffrey R. (2001). Multidimensional constructs in organizational behavior research: An integrative analytical framework. Organizational Research Methods, 4(2), pp. 144-192. doi: 10.1177/109442810142004

Elbashir, M. Z., Collier, P. A., & Davern, M. J. (2008). Measuring the effects of business intelligence systems: The relationship between business process and organizational performance. International Journal of Accounting Information Systems, 9(3), pp. 135-153. doi: 10.1016/j.accinf.2008.03.001

Elbashir, M. Z., Collier, P. A., & Sutton, S. G. (2011). The role of organizational absorptive capacity in strategic use of business intelligence to support integrated management control systems. The Accounting Review, 86(1), pp. 155-184. doi: 10.2308/accr.00000010

Field, A. (2009). Descobrindo a estatística usando o SPSS-2. Bookman.

Fornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research,18(1), pp. 39-50. doi: 10.2307/3151312

Franke, George R., Kristopher J. Preacher & Edward E. Rigdon (2008). Proportional structural effects of formative indicators. Journal of Business Research, 61(12), pp. 1229-1237. doi: 10.1016/j.jbusres.2008.01.011

Gefen D., Straub, D., Boudreau, M. (2000). Structural equation modeling techniques and regression: guidelines for research practice. Communications of the Association for Information Systems, 7(7), pp.1-78. doi: 10.1.1.25.781

Gujarati, D. N., & Porter, D. C. (2011). Econometria Básica-5. Porto Alegre: AMGH Editora.

Hair Jr, J. F., Hult, G. T. M., Ringle, C., & Sarstedt, M. (2014). A primer on partial least squares structural equation modeling (PLS-SEM). Sage Publications.

Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2009). Análise multivariada de dados. Bookman.

Hair, J.F., Ringle, C.M. & Sarstedt, M. (2011) PLS-SEM: Indeed a Silver Bullet. Journal of Marketing Theory and Practice, 19(2), pp.139–151. doi: 10.2753/MTP1069-6679190202

Hall, M. (2008). The effect of comprehensive performance measurement systems on role clarity, psychological empowerment and managerial performance. Accounting, Organizations and Society, 33(2), pp. 141-163. doi: 10.1016/j.aos.2007.02.004

Hall, M., & Smith, D. (2009). Mentoring and turnover intentions in public accounting firms: a research note. Accounting, Organizations and Society, 34(6), pp. 695-704. doi: 10.1016/j.aos.2008.11.003

Hardin, A. M., Chang, J. C. J., & Fuller, M. A. (2008). Clarifying the use of formative measurement in the IS discipline: The case of computer self-efficacy. Journal of the Association for Information Systems, 9(9), pp. 544-546.

Hardin, A. M., Chang, J. C., Fuller, M. A. & Torkzadeh, G. (2011). Formative measurement and academic research: In search of measurement theory. Educational and Psychological Measurement, 71(2), pp. 281-305. doi: 10.1177/0013164410370208

Hartmann, F. (2005). The effects of tolerance for ambiguity and uncertainty on the appropriateness of accounting performance measures. Abacus, 41(3), pp. 241−264. doi: 10.1111/j.1467-6281.2005.00181.x

Hartmann, F., & Slapničar, S. (2009). How formal performance evaluation affects trust between superior and subordinate managers. Accounting, Organizations and Society, 34(6), pp. 722-737. doi: 10.1016/j.aos.2008.11.004

Henri, J. (2007). A quantitative assessment of the reporting of structural equation modeling information: The case of management accounting research. Journal of Accounting Literature, 26, pp. 76−115.

Homburg, C., & Stebel, P. (2009). Determinants of contract terms for professional services. Management Accounting Research, 20(2), pp. 129-145. doi: 10.1016/j.mar.2008.10.001

Howell, R. D. (1987). Covariance structure modeling and measurement issues: A note on Interrelations among a channel entity’s power sources. Journal of Marketing Research, 14(1), pp. 119-126. doi: 10.2307/3151760

Hoyle, R. H. (1995). The structural equation modeling approach: Basic concepts and fundamental issues. In: Structural equation modeling: Concepts, issues, and applications, R. H. Hoyle (editor). Thousand Oaks, CA: Sage Publications, Inc., pp. 1-15.

Hughes, M. A., & Kwon, S.-Y. (1990). An Integrative Framework for Theory Construction and Testing. Accounting, Organizations and Society, 15(3), pp. 179-191. doi: 10.1016/0361-3682(90)90003-D

Hulland, J. (1999). Use of partial least squares (PLS) in strategic management research: a review of four recent studies. Strategic Management Journal, 20(2), pp. 195–204. doi: 10.1002/(SICI)1097-0266(199902)20:2<195::AID-SMJ13>3.0.CO;2-7

Ittner, C. D., Larcker, D. F., & Rajan, M. V. (1997). The choice of performance measures in annual bonus contracts. Accounting Review, pp. 231-255.

Kallunki, J. P., Laitinen, E. K., & Silvola, H. (2011). Impact of enterprise resource planning systems on management control systems and firm performance. International Journal of Accounting Information Systems, 12(1), pp. 20-39. doi: 10.1016/j.accinf.2010.02.001

Lau, C. M., & Roopnarain, K. (2014). The effects of nonfinancial and financial measures on employee motivation to participate in target setting. The British Accounting Review, 46(3), pp. 228-247. doi: 10.1016/j.bar.2014.02.006

Lee, L., Petter, S., Fayard, D., & Robinson, S. (2011). On the use of partial least squares path modeling in accounting research. International Journal of Accounting Information Systems, 12(4), pp. 305–328. doi: 10.1016/j.accinf.2011.05.002

Mahama, H. (2006). Management control systems, cooperation and performance in strategic supply relationships: A survey in the mines. Management Accounting Research, 17(3), pp. 315-339. doi:10.1016/j.mar.2006.03.002

Mason, J. D., & Levy, L. G. (2001). The use of the latent constructs method in behavioral accounting research: The measurement of client advocacy. Advances in Taxation, 13, pp. 123-140. doi: 10.1016/S1058-7497(01)13009-7

Naranjo-Gil, D., & Hartmann, F. (2006). How top management teams use management accounting systems to implement strategy. Journal of Management Accounting Research, 18(1), pp. 21−53. doi: 10.2308/jmar.2006.18.1.21

Naranjo-Gil, D., & Hartmann, F. (2007). Management accounting systems, top management team heterogeneity and strategic change. Accounting, Organizations and Society, 32(7), pp. 735-756. doi: 10.1016/j.aos.2006.08.003

Nascimento, J. C. H. B., Bernardes, J. R., Sousa, W. D., Lourenço, R. L. (2015). Avaliação Institucional: Aplicação da Teoria de Resposta ao Item para Avaliação Discente em Ciências Contábeis. Anais do Congresso da Associação Nacional de Programas de Pós-Graduação em Ciências Contábeis. Curitiba, PR, Brasil, 9. Recuperado em http://congressos.anpcont.org.br/ix/anais/artigo/epc-153-avaliacao-institucional-aplicacao-da-teoria-da-resposta-ao-item-para-avaliacao-discente-em-ciencias-contabeis

Nicolaou, A. I., Sedatole, K. L., & Lankton, N. K. (2011). Integrated Information Systems and Alliance Partner Trust. Contemporary Accounting Research, 28(3), pp. 1018-1045. doi: 10.1111/j.1911-3846.2011.01077.x

Nitzl, C. (2014). Partial Least Squares Structural Equation Modelling (PLS-SEM) in Management Accounting Research: Critical Analysis, Advances, and Future Directions (July 22, 2014). AAA 2015 Management Accounting Section (MAS) Meeting. doi: 10.2139/ssrn.2469802.

Pennington, R. R., Kelton, A. S., & DeVries, D. D. (2006). The effects of qualitative overload on technology acceptance. Journal of Information Systems, 20(2), pp. 25-36. doi: 10.2308/jis.2006.20.2.25

Richardson, H.A., & Vandenberg, R.J. (2005). Integrating managerial perceptions and transformational leadership into a work-unit level model of employee involvement. Journal of Organizational Behavior, 26(5), pp. 561–589. doi: 10.1002/job.329

Rigdon, E. E. (2012). Rethinking partial least squares path modeling: In praise of simple methods. Long Range Planning, 45(5-6), pp. 341-358. doi: 10.1016/j.lrp.2012.09.010

Ringle, C. M., Da Silva, D., & Bido, D. D. S. (2014). Modelagem de equações estruturais com utilização do SmartPLS. Revista Brasileira de Marketing, 13(2), pp. 56-73. doi: 10.5585/remark.v13i2.2717

Rodgers, W. (1999). The influences of conflicting information on novices' and loan officers' actions. Journal of Economic Psychology, 20(2), pp.123−145. doi: 10.1016/S0167-4870(99)00002-1

Rodgers, W., & Guiral, A. (2011). Potential model misspecification bias: Formative indicators enhancing theory for accounting researchers. The International Journal of Accounting, 46(1), pp. 25-50. doi: 10.1016/j.intacc.2010.12.002

Sarkar, M.B., Echambadi, R., & Harrison, J.S. (2001). Alliance entrepreneurship and firm market performance. Strategic Management Journal, 22(6/7), pp. 701-711. doi: 10.1002/smj.179

Shields, J. F., & Shields, M. D. (1998). Antecedents of Participative Budgeting. Accounting, Organizations and Society, 23(1), pp. 49-76. doi: 10.1016/S0361-3682(97)00014-7

Shields, M. D. (1997). Research in Management Accounting by North Americans in the 1990s. Journal of Management Accounting Research, 9, pp. 3-61.

Smith, D., & Langfield-Smith, K. (2004). Structural equation modeling in management accounting research: Critical analysis and opportunities. Journal of Accounting Literature, 23, pp. 49−86.

Smith, M. (2014). Research methods in accounting. Los Angeles: Sage.

Tabachnick B, Fidell L. Using multivariate statistics. New York: Harper Collins College Publishers; 1996.

Vandenbosch, B. (1999). An empirical analysis of the association between the use of executive support systems and perceived organizational competitiveness. Accounting, Organizations and Society, 24(1), pp. 77-92. doi: 10.1016/S0361-3682(97)00064-0

Wong, K. K. K. (2013). Partial least squares structural equation modeling (PLS-SEM) techniques using SmartPLS. Marketing Bulletin, 24(1), pp. 1-32.

Xiao, Xuan (2013). Structural Equation Modeling Compared with Ordinary Least Squares in Simulations and Life Insurers’ Data. Recuperado em 18 maio, 2016, de https://repositories.lib.utexas.edu/bitstream/handle/2152/22516/XIAO-MASTERSREPORT-2013.pdf?sequence=1&isAllowed=y.

Publicado
02-08-2016
Como Citar
Nascimento, J., & Macedo, M. (2016). Modelagem de Equações Estruturais com Mínimos Quadrados Parciais: um Exemplo daAplicação do SmartPLS® em Pesquisas em Contabilidade. Revista De Educação E Pesquisa Em Contabilidade (REPeC), 10(3). https://doi.org/10.17524/repec.v10i3.1376
Seção
Artigos